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1. Introduction 

Complex, nonlinear dynamical systems are pervasive across many Army relevant 
scientific disciplines. Typically, our engineering objectives are to control the 
dynamics (e.g., fluids, polymers), understand underlying phenomena (e.g., 
neuroscience models, turbulence, networks), and/or synthetically mimic natural 
phenomena (e.g., swarm dynamics, self-assemblies, active matter/fluids). 
However, our inability to achieve these objectives for a variety of high-dimensional 
dynamical systems is due to a lack of mathematical tools to describe low-
dimensional (simple) features that may underpin such complex systems. 

In this 3-year effort, we focused on one perspective for extracting simplicity in the 
form of low-dimensional features that otherwise would be hidden by complexity 
(high dimensionality and multi-scale dynamics). This perspective is based on the 
theoretical constructs developed in the 1930s by mathematician Bernard 
Koopman,1 who showed that finite dimensional nonlinear dynamics can be fully 
described by an infinite dimensional linear operator. This operator is referred to as 
the Koopman operator and the resulting projections as Koopman decompositions.2 
Furthermore, as described in Budisic and Mezic’s research,2 the Koopman operator 
approach entails tracking dynamics of observables (i.e., measureable quantities), 
rather than dynamics of states. This perspective makes Koopman operator 
approaches ideal for dealing with ill-described systems in only measurement data 
available rather than access to model equations. 

The contributions of this effort focused on the broad area of dynamical systems 
subjected to external forcing. We considered 2 scenarios: the first in which an 
external forcing is applied to a nonlinear Hopf bifurcation, and the second in which 
the external environment induces long-time memory in the nonlinear system. 
Details of our work in the first scenario are described by Glaz et al.,3 while details 
of the second are provided in the research of Svenkeson et al.4 Section 2 is  
Accomplishments and Section 3 is the Conclusion. 

2. Accomplishments 

2.1 Prescribed External Forcing 

To study the impact of external forcing, we studied a canonical Hopf bifurcation 
system with external forcing. Fluid dynamics induced by periodically forced flow 
around a cylinder was analyzed computationally for the case when the forcing 
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frequency is much lower than the von Karman vortex shedding frequency (i.e., 
Hopf bifurcation frequency) corresponding to the constant flow velocity condition. 
Beginning from the generic dynamical system, 

 𝒛̇𝒛 = 𝑭𝑭(𝒛𝒛), (1) 

we introduced a prescribed forcing U(t) by oscillating the cylinder in the 
streamwise direction.3 This created a simple canonical situation for studying the 
forced bifurcation system under potentially high-dimensional conditions. The 
forced system is then 

 𝒛̇𝒛 = 𝑭𝑭(𝒛𝒛) + 𝑼𝑼(𝑡𝑡). (2) 

However, in the dynamics of observables perspective we are interested in tracking 
a measurable quantity g that may be a nonlinear function of state z (i.e., g(z)). In 
operator form, we showed that the forced system in observable space is described 
by a bi-linear equation, 

 𝒈̇𝒈 = 𝑳𝑳𝐠𝐠 + (𝑼𝑼 ∙ 𝛁𝛁)𝐠𝐠, (3) 

where 𝑳𝑳 is a linear operator that describes the dynamics due to the unforced system, 
Eq. 1, while the forcing appears as a bi-linear term involving 𝑼𝑼 and g. 

By using the Koopman mode decomposition approach, we found a new normal 
form equation that extends the classical Hopf bifurcation normal form by a time-
dependent term for Reynolds numbers close to the Hopf bifurcation value. This was 
done by projecting onto the first Koopman mode associated with the Hopf 
bifurcation and obtaining a reduced order set of equations.3 The resulting 2-
dimensional (2-D) normal form equation was 

 𝜂𝜂 = 𝜆𝜆𝜆𝜆 + 𝛽𝛽𝜂𝜂2𝜂̅𝜂̇ − 𝑖𝑖𝑖𝑖(𝜁𝜁 − 𝜁𝜁)̅𝜂𝜂, (4) 

where 𝜂𝜂 is a complex valued variable representing the observable, 𝜁𝜁 is a complex 
valued variable representing the simple harmonic prescribed forcing term, and the 
remaining terms parameterize the dynamical system and the forcing amplitude. As 
was shown by Glaz et al.3 using normal form theory, Eq. 4 is only necessary when 
the forcing frequency is much less than the Hopf bifurcation frequency. Otherwise, 
nonlinear interactions between the observable and forcing do not result in first-
order effects. The validity of the simple 2-D model in Eq. 4 is shown in Fig. 1. In  
Fig. 1, there is rich spectral content even though there are only 2 underlying 
frequencies, the Hopf bifurcation frequency (26 Hz) and the prescribed forcing 
frequency (0.5 Hz). However, the muli-scale nonlinear interaction between the 
2  scales is captured by the Koopman operator-based approach. Furthermore, the 
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Koopman operator approach correctly reproduces the underlying simplicity of the 
problem in that only one mode is relevant. However, from simply looking at the 
spectrum of the forced system, one may incorrectly conclude that multiple modes 
have been introduced by forcing this nonlinear system. 

 

Fig. 1 Spectrum of nonlinear observable; computational fluid dynamics simulation (blue) 
are for the full-order computational fluid dynamics simulations of the forced system, while 
normal form (red) corresponds to Eq. 4 

Furthermore, we found that the dynamics of the flow in this regime are 
characterized by alternating instances of quiescent and strong oscillatory behavior, 
and that this pattern persists indefinitely. We establish the theoretical underpinnings 
of this phenomenon, that we name quasi-periodic intermittency, using the new 
normal form model in Eq. 4 and showed that the dynamics are caused by the 
tendency of the flow to oscillate between the unstable fixed point and the stable 
limit cycle of the unforced flow. The quasi-periodic intermittency phenomena is 
also characterized by positive Finite-Time Lyapunov Exponents that, over a long 
period of time, asymptotically approach zero.3 The quasi-periodic intermittency 
attractor is shown in Fig. 2 for the same forced Hopf bifurcation case associated 
with Fig. 1. Because of the pervasiveness of the underlying ingredients of quasi-
periodic intermittency, the attractor is a potentially fundamental building block that 
may underpin a variety of multi-scale dynamical systems.
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Fig. 2 The quasi-periodic intermittency attractor (yellow) plotted on the torus. The 
toroidal grid (grey) is shown for reference. Rotation around the large diameter of the torus 
corresponds to the radial growth/decay that occurs over the slow forcing frequency, while 
rotation around the smaller diameter (i.e., phase velocity as the attractor spins around cross 
sections of the torus) corresponds to the faster natural frequency of the system. 

2.2 Spectral Decompositions of Nonlinear Systems with 
Memory  

Following the extension of Koopman operator theory to systems with memory in 
time made during Year 1, during Year 2 we worked toward developing a test 
capable of determining whether an ill-described (black-box) system is better 
represented by ordinary differential equations or fractional differential equations. 
The physical interpretation of the fractional order system is that of a surrounding 
environment acting on a system.5 However, the theory in Stanislavsky5 was limited 
to that of a linear fractional order oscillator. An important contribution of our work 
in4 is that the analogy of a fractional order oscillator to a physical system 
surrounded by an environment can be extended to nonlinear systems by utilizing 
the Koopman operator perspective as a starting point.  

Traditional modeling approaches assume the memoryless system 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥 = 𝐹𝐹(𝑥𝑥).  (5) 

However, in some instances (e.g., when the system of interest is coupled to a 
complex environment) it may be advantageous to assume a system with long-term 
memory in time, where memory effects are represented by fractional order 
differential operators, 

 𝑑𝑑𝛼𝛼

𝑑𝑑𝑡𝑡𝛼𝛼
𝑥𝑥 = 𝐹𝐹(𝑥𝑥). (6) 
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The Koopman spectral decomposition of the memoryless system has the form 

 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = ∑ 𝑉𝑉𝑘𝑘𝑒𝑒𝜆𝜆𝑘𝑘𝑡𝑡∞
𝑘𝑘=1  (7) 

with exponential expansion functions. The spectral decomposition of a system with 
memory has the form  

 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = ∑ 𝑉𝑉𝑘𝑘𝐸𝐸𝛼𝛼(𝜆𝜆𝑘𝑘𝑡𝑡𝛼𝛼)∞
𝑘𝑘=1  (8) 

with Mittag-Leffler expansion functions; we previously derived Eq. 8 through an 
extension of the Koopman operator theory. Given a data set originating from 
observations of a black-box system, we now have 2 tools in Eqs. 7 and 8 that can 
potentially be used to construct 2 different models of the system. Methods exist for 
approximating the eigenvalues 𝜆𝜆𝑘𝑘 and modes 𝑉𝑉𝑘𝑘 of the memoryless spectral 
decomposition, such as generalized Laplace analysis and dynamic mode 
decomposition.  

The analysis leads to the decomposition of a nonlinear system with memory into 
modes whose temporal behavior is anomalous and lacks a characteristic scale. On 
average, the time evolution of a mode follows a Mittag-Leffler function, and the 
system can be described using the fractional calculus. When analyzing data from 
an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-
Leffler functions that we proposed may uncover inherent memory effects through 
identification of a small set of dynamically relevant structures that would otherwise 
be obscured by conventional spectral methods. Consequently, the theoretical 
concepts we present may be useful for developing more general methods for 
numerical modeling that are able to determine whether observables of a dynamical 
system are better represented by memoryless operators, or operators with long-term 
memory in time, when model details are unknown. 

3. Conclusion 

While we made significant progress in accounting for external forcing within a 
Koopman operator-based framework, much work remains to develop a control-
oriented methodology. The addition of a prescribed external force can be 
considered an open loop control example. In this, we showed that the forcing in a 
Koopman-mode-based reduced order model must appear as a bi-linear term. Future 
work should address the inclusion of feedback control capabilities using this term. 
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Furthermore, a key element of an approach that is fully capable of dealing with 
nonlinear systems is the ability to detect and include new modes that may be 
introduced by forcing (or far from equilibrium dynamics).  

No methods exist yet for approximating the eigenvalues and modes in the spectral 
decomposition for systems with memory involving Mittag-Leffler functions. 
However, in principle we can compare the spectral properties of both types of 
decompositions, memoryless and with memory. The caveat is that we still need to 
develop numerical methods for approximating the eigenvalues and modes in  
Eq. 8 to be able to test a data set for memory effects. One direction that could be 
pursued is to extend the nonlinear optimization methods to be compatible with 
Mittag-Leffler functions rather than the exponential time dependence.  

Properly extracting the modes derived from a mechanistic process, though 
seemingly without pattern or chaotic, is a key contribution of this work. While the 
introduction of fractional calculus to obtain a more general spectral decomposition 
approach may be more effective in properly extracting coherency from complex 
systems, we have yet to investigate systems with stochastic features. In many data 
driven system, randomness will be present in the measurements. Future work 
should address the effects of stochastic/random noise in the system such that 
spectral decompositions identify coherent features (modes) and appropriate 
interactions/effects of the noise. Once this is done, one could develop control-
oriented reduced-order models that focus on the deterministic dynamics, the 
random effects, or both.  

 

 



 

Approved for public release; distribution is unlimited. 

7 

4. References 

1. Koopman BO. Hamiltonian systems and transformation in Hilbert space. 
Proceedings of the National Academy of Sciences of the United States of 
America. 1931;17(5):315. 

2. Budisic M, Mezic I. Applied Koopmanism. Chaos. 2012;22. doi: 
10.1063/1.4772195. 

3. Glaz B, Mezić I, Fonoberova M, Loire S. Quasi-periodic intermittency in 
oscillating cylinder flow. arXiv. 2016;1609:06267. 

4. Svenkeson A, Glaz B, Stanton S, West B. Spectral decompositions of 
nonlinear systems with memory. Physical Review E. 2016;93:022211. 

5. Stanislavsky AA. Fractional oscillator. Phys. Rev. E. 2004;70:051103. 

 

 



 

Approved for public release; distribution is unlimited. 

8 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 2 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO L 
  IMAL HRA MAIL & RECORDS 
  MGMT 
 
 1 GOVT PRINTG OFC 
  (PDF)  A MALHOTRA 
 
 2 DIR USARL 
 (PDF) RDRL VTV 
   B GLAZ 
   A SVENKESON 


	List of Figures
	1. Introduction
	2. Accomplishments
	2.1 Prescribed External Forcing
	2.2 Spectral Decompositions of Nonlinear Systems with Memory

	3. Conclusion
	4. References

